

DPP - 5 (COM)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solutionon Website:-

Q 1. A particle of mass m is made to move with uniform speed v_{0} along the perimeter of a regular hexagon. The magnitude of impulse applied at each corner of the hexagon is
(a) $2 \mathrm{mv}_{0} \sin \frac{\pi}{6}$
(b) $m v_{0} \sin \frac{\pi}{6}$
(c) $m v_{0} \sin \frac{\pi}{3}$
(d) $2 m v_{0} \sin \frac{\pi}{3}$

Q 2. Displacement of a particle of mass 2 kg moving In a straight line varies with time as s $=\left(2 t^{3}+2\right) \mathrm{m}$. Impulse of the force acting on the particle over a time interval between t $=0$ and $\mathrm{t}=1 \mathrm{~s}$ is:
(a) $10 \mathrm{~N}-\mathrm{s}$
(b) $12 \mathrm{~N}-\mathrm{s}$
(c) $8 \mathrm{~N}-\mathrm{s}$
(d) $6 \mathrm{~N}-\mathrm{s}$

Q 3. The magnitude of force (in Newtons) acting on a body varies with time (in micro second) as shown in the figure. The magnitude of total impulse of the force on the body from $t=4 \mu \mathrm{~s}$ to $\mathrm{t}=16 \mu \mathrm{~s}$ is -

(a) $5 \times 10^{-2} \mathrm{Ns}$
(b) $5 \times 10^{-3} \mathrm{Ns}$
(c) $5 \times 10^{-4} \mathrm{Ns}$
(d) $5 \times 10^{-6} \mathrm{Ns}$

Q 4. An impulse \vec{I} changes the velocity of a particle from \vec{V}_{1} to \vec{V}_{2}. Kinetic energy gained by the particle is -
(a) $\left.(1 / 2) \vec{I} \underset{\rightarrow}{\left(\vec{V}_{1}\right.}+\vec{V}_{2}\right)$
(b) $(1 / 2) \vec{I}\left(\vec{V}_{1}-\vec{V}_{2}\right)$
(c) $\left.\vec{I} \xrightarrow[\rightarrow]{\left(\vec{V}_{2}-\vec{V}_{1}\right.}\right)$
(d) $\vec{I}\left(\vec{V}_{2}+\vec{V}_{1}\right)$

Q 5. Displacement-time graph of a particle moving in a straight line is as shown in figure. Mass of the particle is 2 kg . The total Impulse imparted to the particle in a time interval from $t=0$ to $t=6 \sin N-s$ will be

(a) 30
(b) 15
(c) -30
(d) -15

Q 6. A block of mass m is moved towards a movable wedge of mass $M=2 m$ and height h with velocity u (All surfaces are smooth). If the block just reaches the top of the wedge, the magnitude of horizontal impulse by wedge on block is -

(a) $\mathrm{mu} / 3$
(b) $m u / 2$
(c) $2 \mathrm{mu} / 3$
(d) mu

Q 7. A spring of stiffness K is attached with two blocks A and B. This spring blocks system is placed on smooth ground with spring in natural length. At $t=0$, an external agent starts pulling block A with constant velocity u. Impulse by spring to block B when spring regains its naturablength first time is?

(a) 0
(b) mu
(c) 2 mu
(d) $\mathrm{mu} / 2$

Q 8. A force $\mathrm{F}=\operatorname{Sin} \mathrm{t}$, is acting on a particle. Maximum impulse that the force can supply to particle is
(a) 1 unit
(b) 2 unit
(c) 3 unit
(d) 4 unit

Q 9. A block of mass 1 kg is projected on rough horizontal plane with initial velocity 6 $\mathrm{m} / \mathrm{sec}$. coefficient of friction is $\mu=\mathrm{x} / 3$, where x is displacement of block. Magnitude of total impulse imparted by friction on block is
(a) $3 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(b) $6 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(c) $12 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(d) $9 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$

Q 10. A sphere of radius 1 meter and mass 1 kg is placed on smooth ground. An impulse of $20 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$ is imparted on it as shown in figure. Find velocity of sphere after imparting impulse ?(sphere is not bouncing up)

(a) $20 \mathrm{~m} / \mathrm{sec}$
(b) $10 \mathrm{~m} / \mathrm{sec}$
(c) $17 \mathrm{~m} / \mathrm{sec}$
(d) $8.5 \mathrm{~m} / \mathrm{sec}$

Q 11. In given figure ' B ' and ' C ' have equal mass 1 kg each and mass of ' A ' is 2 kg . system was initially at rest. A ball of mass 1 kg hits ' A ' with speed $25 \mathrm{~m} / \mathrm{sec}$ as shown in figure and sticks with it. Velocity of 'A' just after hitting is

(a) $4 \mathrm{~m} / \mathrm{Sec}$
(b) $6 \mathrm{~m} / \mathrm{Sec}$
(c) $16 \mathrm{~m} / \mathrm{Sec}$
(d) $8 \mathrm{~m} / \mathrm{Sec}$

Answer Key

Q. 1 a	Q. 2 b	Q. 3 b	Q. 4 a	Q.5 d
Q. 6 c	Q. 7 c	Q.8 b	Q.9 b	Q. 10 b
Q.11 d				

