

$\mathbf{DPP} - \mathbf{5} (\mathbf{COM})$

Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/76
Video Solution on YouTube:-	https://youtu.be/sBcJF0ZjGQE
Written Solutionon Website:-	https://physicsaholics.com/note/notesDetalis/81

- A particle of mass m is made to move with uniform speed v₀ along the perimeter of a Q1. regular hexagon. The magnitude of impulse applied at each corner of the hexagon is (a) $2mv_0 \sin \frac{\pi}{6}$ (b) $mv_0 \sin\frac{\pi}{6}$ (c) $mv_0 \sin\frac{\pi}{3}$ (d) $2mv_0 \sin\frac{\pi}{3}$
- Displacement of a particle of mass 2 kg moving In a straight line varies with time as s Q 2. $= (2t^3 + 2)$ m. Impulse of the force acting on the particle over a time interval between t =0 and t =1 s is: (a) 10 N-s (b) 12 N-s (c) 8 N-s (d) 6 N-s
- The magnitude of force (in Newtons) acting on a body varies with time (in micro Q 3. second) as shown in the figure. The magnitude of total impulse of the force on the body from $t = 4\mu s$ to $t = 16\mu s$ is –

An impulse \vec{l} changes the velocity of a particle from \vec{V}_1 to \vec{V}_2 . Kinetic energy gained Q4. by the particle is –

(a) $(1/2)\vec{l} (\vec{V_1} + \vec{V_2})$ (b) $(1/2) \stackrel{?}{I} (V_1 - V_2)$ (c) $\stackrel{?}{I} (V_2 - V_1)$ (d) \vec{I} $(\vec{V}_2 + \vec{V}_1)$

Q 5. Displacement-time graph of a particle moving in a straight line is as shown in figure. Mass of the particle is 2 kg. The total Impulse imparted to the particle in a time interval from t = 0 to $t = 6 \sin N$ -s will be

Q 6. A block of mass m is moved towards a movable wedge of mass M = 2m and height h with velocity u (All surfaces are smooth). If the block just reaches the top of the wedge, the magnitude of horizontal impulse by wedge on block is –

Q 7. A spring of stiffness K is attached with two blocks A and B. This spring blocks system is placed on smooth ground with spring in natural length. At t= 0, an external agent starts pulling block A with constant velocity u. Impulse by spring to block B when spring regains its natural length first time is ?

Q 8. A force F = Sin t, is acting on a particle. Maximum impulse that the force can supply to particle is
(a) 1 unit
(b) 2 unit
(c) 3 unit
(d) 4 unit

- Q 9. A block of mass 1 kg is projected on rough horizontal plane with initial velocity 6 m/sec. coefficient of friction is $\mu = x/3$, where x is displacement of block. Magnitude of total impulse imparted by friction on block is
 - (a) 3 Kg m/sec
 - (b) 6 Kg m/sec
 - (c) 12 Kg m/sec
 - (d) 9 Kg m/sec
- Q 10. A sphere of radius 1 meter and mass 1 kg is placed on smooth ground. An impulse of 20 kg m/sec is imparted on it as shown in figure. Find velocity of sphere after imparting impulse ?(sphere is not bouncing up)

Q.1 a	Q.2 b	Q.3 b	Q.4 a	Q.5 d
Q.6 c	Q.7 c	Q.8 b	Q.9 b	Q.10 b
Q.11 d				

3